domenica 5 marzo 2017

L’auto-organizzazione dei mercati finanziari

 
Il crollo del mercato azionario e’ un calo improvviso e drammatico dei prezzi delle azioni con conseguente perdita significativa di ricchezza. I crolli in genere sono guidati dal panico degli investitori e da fattori economici sottostanti. Spesso essi seguono le cosiddette bolle speculative del mercato azionario. I crolli sono dei veri e propri fenomeni sociali dove gli eventi economici si combinano con il comportamento e la psicologia della folla formando un loop con retroazione positiva dove la vendita iniziale da parte di un piccolo gruppo convince sempre piu’ persone a fare la stessa cosa. Sono stati individuati dei path preferenziali che portano ad una crisi del mercato:
1) Un periodo prolungato di aumento dei prezzi delle azioni e un eccessivo ottimismo economico
2) Un mercato dove i rapporti P/E superano significativamente il valore medio di lungo termine
3) L’uso estensivo del cosiddetto Margin debt da parte degli investitori (il margin debt e’ il denaro che gli investitori prendono in prestito per esempio dalle banche per acquistare delle azioni)
La caratterizzazione matematica dei movimenti dei mercati azionari e quindi la possibilita’ di prevedere i crolli del mercato sono stati da sempre un campo di interesse di economisti, matematici e ultimamente anche di fisici. L’assunzione convenzionale e’ quella di un mercato che si muove seguendo una distribuzione log-normale. In altre parole si assume che il logaritmo dei rendimenti (rapporto tra prezzo di oggi St e quello di ieri St-1) sia distribuito come una gaussiana (distribuzione a campana).

image

Questa assunzione comunque non e’ sempre vera come si puo’ osservare prendendo come esempio i prezzi dell’ultimo anno del titolo Google. Il test di normalita’ di Shapiro-Wilk non passa essendo il valore molto prossimo a zero (una distribuzione normale deve avere questo parametro tendente a 1).


image


La stessa cosa e’ vera per i rendimenti del titolo Apple nell’ultimo anno.


image

Per questo motivo il matematico Benoit Mandelbrot nel 1963 suggeri’ che questa statistica fosse incorretta osservando che i movimenti significativi dei prezzi (i crolli) sono molto piu’ comuni di quanto previsto da una distribuzione lognormale. Dopo le osservazioni di Mandelbrot altri studiosi hanno suggerito che i movimenti del mercato vengono spiegati meglio da concetti utilizzati in teoria del caos e dell’analisi non-lineare. Tutto questo e’ stato riassunto con linguaggio non matematico da George Soros nel suo libro “L’alchimia della finanza” dove parla di quella che lui chiama la riflessivita’ dei mercati e i loro movimenti non lineari. La tesi principale e’ che i mercati sono tutt’altro che efficienti e che l’uomo oeconomicus e’ tutt’altro che razionale. Al contrario i prezzi di mercato riflettono piu’ che altro l’ignoranza i pregiudizi e spesso l’irrazionalita’ di milioni di investitori. Essi non riflettono accuratamente le condizioni sottostanti fornendo un quadro che in un modo o nell'altro è sempre di parte o distorto. Le visioni distorte dei protagonisti del mercato ed espresse nei prezzi possono, in certe circostanze, intaccare i fondamentali del mercato. Questo circuito di andata e ritorno tra i prezzi di mercato e la realtà sottostante e’ la reflexivity, "riflessività" di Soros. I mercati finanziari riflettono sempre questo circuito a due vie e possono a tratti allontanarsi molto dal cosiddetto equilibrio. In altre parole, è tipico dei mercati finanziari essere predisposti alla creazione di bolle speculative. In economia non vince l'ordine, ma il suo contrario, perché le scelte operate ad alto livello sui mercati internazionali sono pur sempre il frutto di interessi (e di errori) di singoli individui. L'economia viene influenzata (quindi subisce un riflesso) dalle condizioni sociali vigenti, che raramente sono di stabilità; molto più spesso sono di panico, paura, euforia. Condizioni che, se portate alle estreme conseguenze, possono sfociare in situazioni d'emergenza quali una bolla immobiliare e il crollo delle borse. In economia una bolla speculativa e’ una particolare fase di mercato caratterizzata da un aumento considerevole e ingiustificato dei prezzi di uno o più beni, dovuto ad una crescita della domanda repentina e limitata nel tempo. Alla fase di nascita e di crescita della bolla segue poi la fase di scoppio che tende a ripristinare i valori originari del bene in questione. L'eccesso di domanda che spinge verso l'alto in poco tempo il valore di un bene, di un servizio, di una impresa o più semplicemente di un titolo, si può ricondurre all'irrazionale (o razionale) euforia di soggetti economici convinti che una nuova industria, un nuovo prodotto, una nuova tecnologia potranno offrire cospicui guadagni e registrare una crescita senza precedenti. Scatta, pertanto, la corsa all'acquisto del diritto, nella speranza di rivendere lo stesso ad un prezzo superiore. La corsa all'acquisto provoca un aumento del prezzo che conferma, agli occhi di molti, la bontà della precedente previsione di un futuro aumento del prezzo del diritto. Questo stimola ulteriormente gli acquisti e quindi fa aumentare ancora una volta il prezzo. La profezia in altri termini si avvera, inducendo nuovi soggetti economici ad acquistare i medesimi titoli. Tra questi, man mano che i valori crescono, si annoverano sempre più soggetti solitamente restii ad acquistare strumenti finanziari dal rischio elevato. Quando il valore dei titoli scende repentinamente e si assiste a un cambiamento radicale delle prospettive economiche retrostanti, si parla di scoppio della bolla speculativa. L'eccesso di acquisto di un diritto, infatti, ad un certo punto si arresta. Le cause possono essere almeno tre:
  • è difficile trovare nuovi investitori disposti ad acquistare ulteriori diritti ad un prezzo che nel frattempo è diventato elevato;
  • chi ha comperato diritti in precedenza è spinto a vendere i titoli per monetizzare il guadagno;
  • le ottimistiche prospettive di guadagno precedentemente formulate possono essere riviste e ridimensionate.
Alla fase di crescita dei valori segue dunque una fase opposta, durante la quale si assiste ad un calo considerevole delle quotazioni. All'eccesso di vendite contribuiscono la consapevolezza che, di fronte a prospettive economiche meno ottimistiche, i valori dei titoli trattati sono destinati a calare e la volontà di molti possessori di titoli di cederli prima che si verifichino ulteriori diminuzioni del valore.
Torniamo alla non linearita’ dei mercati riportando una ricerca del MIT che ha evidenziato come la frequenza dei crolli di mercato segue una legge di potenza cosi’ come fanno i terremoti (vedi altri post sul mio blog su questo tema) e altri sistemi naturali. Ma la cosa strana e’ che il mercato non ha nulla di naturale essendo un mondo artificiale. Il mercato e’ pieno di casualita’, ma alla fine della giornata emerge un chiaro pattern che combacia con i pattern evidenziati in sistemi diversi come terremoti, distribuzione delle dimensioni delle citta’ e le parole in un vocabolario. Gli studiosi del MIT hanno anche trovato che le ampie fluttuazioni dei prezzi sono indotte dai partecipanti al mercato quando essi si trovano ad operare sotto pressione. Come in Giappone, per esempio, hanno costruito palazzi che resistono a sismi di forte entita’ ed evitare tante vittime, allo stesso modo bisogna fare in economia anche se e’ molto difficile. Oltre ai crolli del mercato, anche i volumi, le azioni vendute/comprate in un giorno e i prezzi delle azioni seguono una legge di potenza. Questo vuol dire per esempio, che il numero di giorni in cui il prezzo di una data azione si muove del 1% e’ 8 volte il numero di giorni in cui l’azione si muove del 2%, che a sua volta sara’ 8 volte il numero di giorni che il prezzo dell’azione si muove del 4% , che sara’ 8 volte il numero di giorni in cui il prezzo dell’azione si e’ mosso del 8% e cosi via. Per comprendere questi pattern il team del MIT ha analizzato i grossi azionisti, come i fondi comuni di investimento con piu’ di 100 milioni di dollari in attivo. Anche loro seguono una legge di potenza; il numero di azionisti che gestiscono 1 miliardo di dollari e’ il doppio di quelli che gestiscono 2 miliardi che a sua volta e’ il doppio di quelli che gestiscono 4 miliardi e cosi via (per chi di voi mi segue da tempo si sara’ accorti che questa altro non e’ che la cosiddetta legge di Zipf). Quando gli enti, come quelli che gestiscono i fondi comuni, che possono muovere grosse quantita’ di soldi si trovano a lavorare sotto pressione si possono avere grosse fluttuazioni di prezzi e la possibilita’ quindi di una bolla che a tendere puo’ diventare un vero e proprio crollo. Questi e altri studi dimostrano in modo inequivocabile che i crolli del mercato sono un chiaro segno di criticita’ auto-organizzata del mercato stesso. Le forti fluttuazioni delle quotazioni in borsa, come gli improvvisi crolli sono determinati dal loro naturale funzionamento, anche in assenza di fragilità strutturale o di interferenze malavitose criminali. Lo stato di non equilibrio è uno stato critico e quindi presenta cambiamenti improvvisi ed inspiegabili, che fortunatamente sono rari, come rari sono i terremoti catastrofici. Le gigantesche e rovinose crisi finanziarie, anche se rare (e più rare sono, più sono nefaste) sono eventi ordinari del tutto naturali e seguono le stesse leggi fisiche dei terremoti. Un’altra ricerca fatta all’Istituto dei Sistemi Complessi in New England ha trovato dei segnali premonitori dei crolli del mercato usando dei nuovi strumenti statistici sviluppati nell’ambito della teoria della complessita’. Questo lavoro suggerisce che il panico che porta ai crolli del mercato deriva da un’aumentata mimicita’ cioe’ della serie che ognuno copia l’altro. Un significativo aumento della mimica nel mercato si e’ presentato per esempio nell’anno precedente ad ognuno dei crolli degli ultimi 25 anni. Quando gli investitori copiano molto da vicino gli spunti degli altri e’ facile entrare in una situazione di panico che coinvolge il mercato. Quando i grandi investitori iniziano a vendere delle azioni, essi guidano il prezzo in basso in quanto la vendita genera paura nei piccoli investitori che iniziano a vendere anche loro. Se questo loop va fuori controllo il mercato entra in uno stato di panico. Quest’ultimo in economia come in altri aspetti della vita, puo’ essere generato da reali minacce esterne al sistema ma anche da nervosismo auto-generato internamente al sistema. Indipendentemente dal fatto che la minaccia e’ reale o immaginaria, un sistema vivente entra in uno stato di panico quando e’ sopraffatto da agitazione, ansia e paura. Maggiore e’ il numero di organismi presenti nel sistema e piu’ catastrofici sono gli effetti generati dal panico. Cercare di prevedere il comportamento di sistemi sociali ed economici in generale e’ molto complicato. Essi sono composti da agenti umani, tutti con i loro interessi personali, strategie e obiettivi. Ci sono comunque dei casi in cui le interazioni tra individui danno origine ad un comportamento collettivo. In questi casi, la previsione e’ possibile in quanto se gli individui si muovono insieme lo spazio dei possibili risultati del sistema si rimpicciolisce. In questo modo se il panico e’ realmente la causa delle crisi finanziarie, se si riesce a quantificarlo si potrebbe pensare di prevedere quando queste crisi si presenteranno. Proviamo allora a rispondere a queste due questioni:

· E’ possibile quantificare il panico?
· E’ possibile usare il panico per prevedere le crisi del mercato?

Nell’economia tradizionale i prezzi riflettono le aspettative degli individui in base alle notizie: solo le informazioni esterne al sistema possono guidare le decisioni. In realta’, i mercati sono delle vere e proprie reti di influenza (Fig. 1): le persone parlano tra loro e guardano quello che fanno gli altri prima di decidere cosa fare. Questo significa che per avere il quadro completo del sistema, bisogna considerare anche l’imitazione interna al sistema stesso.


                         Economia tradizionale                                            Sistemi complessi

image

Fig. 1 Confronto tra la prospettiva del mercato tradizionale, dove solo le notizie dall’esterno influenzano le decisioni dei singoli agenti (nodi), e quella complessa dove viene considerata l’interazione interna tra gli agenti.


Il gruppo di studiosi del New England ha costruito un modello includendo entrambi i fattori e verificato il comportamento di tale modello sui dati economici per quantificare i due effetti. Per semplificare, il sistema puo’ essere pensato come una rete completamente connessa con N nodi, dove ogni nodo puo’ assumere i valori binari +1 o -1. Ad ogni step temporale, un nodo guarda i primi vicini, ne prende uno a caso, e con una certa probabilita’, copia quello che sta facendo. Alcuni nodi sono fissi e non possono cambiare il loro valore. I nodi che fluttuano nel tempo rappresentano gli investitori mentre quelli fissi le notizie economiche provenienti dai mass media.
Alcune volte il valore delle azioni dipende dalle notizie e altre volte dalla copia dei primi vicini. Il valore binario che le azioni possono assumere rappresenta il segno del rendimento. Il numero di nodi fissi (notizie) che influenzano il valore delle azioni positivamente puo’ essere indicato con la lettera U mentre il numero che influenza il valore delle azioni negativamente puo’ essere indicato con D. Questo modello e’ simile a quello di Ising nel senso che riesce a descrivere la transizione da stati ordinati a disordinati e viceversa. I parametri importanti che determinano il comportamento di questo modello sono due:

· Il rapporto tra i collegamenti (links) esterni ed interni (cioe’ l’influenza delle notizie (U+D)/N)
· La frazione dei nodi positivi (cioe’ il rapporto (U-D)/N).

Qui di seguito i risultati dell’applicazione del modello a dei dati reali. E’ stato considerato l’indice Russel 3000 che comprende le 3000 azioni americane piu’ negoziate in borsa. La figura 2 indica il co-movimento delle azioni nel tempo nel senso che rappresenta il numero di giorni dell’anno in cui una frazione del mercato si muove in alto (o in basso). Intuitivamente se in media piu’ del 50% del mercato si muove nella stessa direzione (in alto o in basso) questo rappresenta un co-movimento. Nel 2000 per esempio la curva mostra un picco a 1/2 il che significa che il prezzo del 50% di azioni si sta muovendo in alto e il 50% in basso. Le linee continue rappresentano le distribuzioni sperimentali mentre le linee tratteggiate rappresentano il risultato del modello. Come si vede il fit e’ molto buono.
 

image

Fig. 2 Sull‘asse verticale e’ riportato la frazione di giorni dell’anno in cui una certa frazione di azioni (asse orizzontale) si e’ mossa in alto (rendimento positivo).


Nei 6 anni riportati in figura 2, si vede che avvicinandosi al 2008 la curva si appiattisce indicando che la probabilita’ di qualsiasi frazione e’ sempre la stessa. Quindi la probabilita’ che una larga parte del mercato si muova nella stessa direzione (in alto o in basso), in qualsiasi giorno dell’anno aumenta drammaticamente. Un livello cosi alto di co-movimento puo’ dare origine ad un comportamento collettivo e quindi ad una crisi finanziaria. Notare come dal 2000 al 2008 il valore del parametro U diminuisce indicando chiaramente una minore influenza delle notizie dei mass media sul sistema (i nodi fissi) e quindi una maggiore tendenza all’imitazione interna. Analiticamente la probabilita’ di co-movimento e’ data da:

image

dove N e’ il numero di azioni, k il numero di azioni con rendimento positivo e le parentesi indicano i coefficienti binomiali. Il comportamento del modello e’ controllato dall’intensità’ degli stimoli esterni U e D rispetto a quelli delle interazioni interne alla rete. Quando le interazioni interne sono deboli in confronto alle forze esterne (D, U>>1), la distribuzione e’ normale. Quando le interazioni interne sono forti (U e D piccoli) allora la distribuzione inizia a diventare uniforme, diventando esattamente uniforme in corrispondenza del valore critico D=U=1, dove l’influenza esterna ha l’intensita’ di un singolo nodo. Nella parte alta della figura 3 e’ riportato l’andamento temporale del parametro U. Mentre negli anni 90 c’era una situazione salutare per la borsa la stessa cosa non si puo’ dire oggi poiche’ ognuno cerca di copiare l’altro. La seconda immagine della figura 3 indica gli 8 giorni con crollo del prezzo significativo nel periodo 1985-2010 indicati con delle linee rosse. Questi sono stati raggruppati in 4 finestre temporali indicate in celeste. Come utilizzare il parametro U per individuare questi giorni?
 

image

Fig. 3 Il pannello in alto mostra l’andamento del parametro U nel tempo. Quello in basso invece mostra la variazione annuale del parametro U come frazione della sua standard deviation calcolata sugli anni precedenti.


Piu’ che il valore di U e’ importante considerare il cambiamento di U da un anno a quello precedente diviso la standard deviation delle sue fluttuazioni. Ogni crollo e’ preceduto da un semplice pattern. Facciamo partire il nostro orologio quando il cambiamento di U scende al di sotto di 2 standard deviations: all’interno del prossimo anno ci sara’ un crollo significativo del mercato. Si azzera l’orologio una volta che la variazione di U diventa positiva di nuovo. Se si segue questo pattern si puo’ vedere come tutti gli otto crolli vengono previsti correttamente. Non ci sono ne’ falsi positivi ne’ falsi negativi. Questo ricorda molto da vicino il comportamento collettivo dei sistemi complessi. Una volta che il sistema subisce una perturbazione (rilassamento) c’e’ un rilascio improvviso di energia e poi molto lentamente il sistema si porta di nuovo verso uno stato di criticita’ pronto a dare origine ad una nuova catastrofe (o valanga nell’esperimento del mucchietto di sabbia di Per Back...). Costruire modelli e’ divertente, e anche se tutti i modelli sono sbagliati, qualcuno di questi e’ certamente utile.
Un altro modello che merita la nostra attenzione e’ quello proposto da due fisici polacchi e che utilizza il cosiddetto esponente di Hurst per fare una previsione statistica dei crolli del mercato. Vediamo di cosa si tratta. Anche in questo studio viene evidenziata la complessita’ del sistema finanziario e della sua non predicibilità. Comunque dalla meccanica statistica sappiamo che non c’e’ bisogno di sapere dove si muovera’ esattamente una particella del sistema per trovare l’equazione di stato di questo sistema. Ricordiamo che l’equazione di stato fornisce una relazione matematica tra due o più variabili di stato associate alla materia, come temperatura, pressione, volume o energia interna. Le equazioni di stato sono utili nella descrizione delle proprietà dei fluidi (e delle loro miscele), dei solidi e persino per descrivere l'interno delle stelle. L’equazione di stato e’ sufficiente nelle applicazioni pratiche per darci un’informazione globale del sistema grazie alle variabili macroscopiche che sono legate a quelle microscopiche a noi inaccessibili. In molti casi questa conoscenza e’ sufficiente ad indicarci la direzione in cui il sistema evolvera’. Allo stesso modo i due fisici si chiedono se e’ possibile trovare dei parametri macroscopici relativi al mercato che possano essere degli indicatori delle dinamiche interne del sistema finanziario. Come gia’ detto la distribuzione dei rendimenti non segue esattamente una legge Gaussiana quanto invece una legge di potenza e quindi e’ normale attendersi delle correlazioni di lungo periodo cioe’ una sorta di lunga memoria del mercato. Quindi e’ giusto andare a cercare tali correlazioni nei dati storici dei mercati azionari. Cio’ e’ stato fatto da questo team polacco utilizzando la cosiddetta tecnica DFA (Detrended Fluctuations Analysis). Questa applicata alle serie temporali degli strumenti finanziari permette di estrarre l’esponente di Hurst che misura il livello di persistenza di un dato segnale. Se il sistema coincidesse con un cammino casuale il valore dell’esponente H sarebbe di 0.5 indicando una serie di eventi indipendenti: ogni variazione non è influenzata dalle precedenti e nemmeno influenzerà quelle future. Se invece l’esponente e’  maggiore di 0.5 questo sta a significare che la distanza coperta dal sistema è assai maggiore di quella predetta dal random walk model: il sistema risulta caratterizzato da un effetto memoria per il quale ogni osservazione è influenzata da quelle passate ed influenzerà quelle future. Se questo esponente e’ diverso da 0.5 questo implica l’esistenza di correlazioni a lungo range. In particolare se l’esponente di Hurst e’ maggiore di 0.5 allora il segnale e’ persistente mentre se e’ minore di 0.5 allora il segnale e’ anti-persistente. Per serie persistente, intendiamo una serie caratterizzata da una dipendenza positiva tra le variazioni generate dal processo: se nell’ultima osservazione abbiamo registrato un incremento (decremento) è più probabile che l’osservazione successiva registri un ulteriore incremento (decremento). La probabilità di registrare due variazioni di segno concorde risulta tanto più alta quanto piu’ H si avvicina ad uno. Per anti-persistente invece intendiamo una serie che se in un dato periodo ha subito un incremento (decremento) è più probabile registrare un successivo decremento (incremento) che un ulteriore incremento (decremento). La serie risulta più volatile di una serie casuale (poiché caratterizzata da più frequenti inversioni) tanto più il valore di H si avvicina a zero. Prima di un cambio drammatico del prezzo di uno strumento finanziario ci si aspetta che esso venga preceduto da uno stato di eccitazione del mercato (nervosismo) che a sua volta e’ riflesso dalla forma dei cambiamenti di prezzo dei giorni seguenti. Questi cambiamenti dovrebbero diventare meno correlati prima di un crollo nel trend del segnale. Al contrario quando il trend nel mercato e’ forte e ben determinato, un aumento (diminuzione) del prezzo visto nel passato recente rende piu’ probabile un segnale in crescita (decrescita) anche nel futuro immediato, In altre parole l’esponente di Hurst dovrebbe mostrare una diminuzione significativa e repentina se il trend sta cambiando velocemente la sua direzione come in caso di crollo del mercato. Tra le varie tecniche disponibili per calcolare l’esponente di Hurst i due studiosi hanno scelto quella del DFA essendo piu’ robusta e applicata all’indice Dow Jones Industrial Average (DJIA). Nella fig 4 possiamo vedere il trend dell’indice DJIA e il valore dell’esponente di Hurst indicato con alfa per diversi valori di N che indicano la lunghezza delle finestre temporali in cui viene diviso il segnale come richiesto dalla tecnica DFA. Notiamo che per N=350 e 420 l’esponente di Hurst e’ molto simile cosa non vera invece per N=210. All’aumentare di N si nota come l’andamento dell’esponente diventa piu’ liscio (smooth). Comunque la scelta di N e’ del tutto empirica e non c’e’ alcuna legge per determinarlo. Per l’analisi del segnale DJIA riportato nella figura 5 il valore di N scelto e’ stato di 240. Il primo crollo analizzato e’ stato quello del 1929 il cui dettaglio e’ mostrato in fig 6. Si vede chiaramente come l’abbassamento repentino del valore del DJIA corrisponde ad un abbassamento dell’esponente di Hurst con quest’ultimo che raggiunge il minimo assoluto del periodo a circa 0.45, 2 settimane prima del crollo. Per verificare se questa coincidenza fosse semplicemente dovuta al caso i due fisici polacchi hanno ripetuto la stessa analisi per il crollo del 1987 e 1998 confermando un abbassamento dell’esponente di Hurst (nervosismo dei mercati) alcune settimane prima del crollo del mercato. In definitiva essi hanno provato che l’esponente di Hurst si abbassa drasticamente prima di ogni crollo dell’indice DJIA. Questo conferma che l’esponente di Hurst puo’ essere usato come misura dello stato attuale di eccitazione del mercato anche se va ricordato che fattori esterni agli investitori possono accelerare o decelarare il valore dell’esponente di Hurst e mettere in crisi la previsione.
Prima di chiudere il post va precisato che i modelli descritti fin qui e tanti altri simili che si possono trovare in rete non hanno la pretesa di predire quando ci sara’ il prossimo crollo finanziario o il prossimo terremoto. Essi nascono con il solo intento di fare una previsione statistica. Nessuno sapra’ la data e l’ora esatta del prossimo crollo finanziario o terremoto. L’unica cosa possibile e’ calcolare la probabilita’ che in un certo periodo possa presentarsi una crisi finanziaria o un terremoto. E niente di piu’.
 

image

Fig 4, Andamento nel tempo dell’esponente di Hurst indicato con alfa per l’indice DJIA nel periodo Feb 1913-Giu 1914 per tre differenti finestre temporali N. I valori di alfa sono stati moltiplicati per 2 e spostati lungo l’asse verticale per apprezzare le differenze.

 

image

Fig 5. Andamento dell’indice DJIA tra il 1896 e 2003. Gli eventi economici piu’ importanti sono riportati sulla curva.

 

image

Fig 6. Il crollo del 1929. In alto l’andamento del DJIA e in basso il corrispondente esponente di Hurst, In corrispondenza del crollo dei prezzi si nota un repentino abbassamento dell’esponente.


Nessun commento:

Posta un commento

http://www.wikio.it