domenica 29 luglio 2012

Un problema molto complesso – La congettura di Collatz


Il primo a proporre questa congettura e’ stato Lothar Collatz nel 1937, da cui ha preso il nome. La congettura e’ anche conosciuta come il problema 3n+1. La sequenza di numeri coinvolti e’ riferita come la sequenza dei chicchi di grandine (hailstone sequence in inglese).
Questa congettura e’ cosi complicata da dimostrare, che il grande genio matematico Paul Erdos, un giorno disse che la matematica ancora non era pronta per risolvere un tale problema. Ma vediamo da vicino in che cosa consiste questa congettura.
Consideriamo un qualsiasi numero intero positivo n.
  1. Se n e’ pari, lo dividiamo per 2
  2. Se n e’ dispari, lo moltiplichiamo per 3 e aggiungiamo 1.
Se eseguiamo queste operazioni ripetutamente, prendendo come ingresso, il risultato dell’operazione precedente, si raggiunge sempre il numero 1 indipendentemente dal numero di partenza n.
Il numero di passi impiegati per arrivare ad 1 e’ detto il tempo totale di arresto del numero n (total stopping time in inglese). Nella figura 1 vengono riportati i tempi di arresto di tutti i numeri interi tra 2 e 9999, mentre nella figura 2 la frequenza con cui ogni tempo di arresto si presenta per valori di n tra 2 e 20000.
 

col2

Figura 1: Grafico dei tempi di arresto per i numeri da 2 a 9999.


Osservare che ci sono due picchi a circa 50 e 135 con oscillazioni che si accentuano nell’intorno di questi due picchi e che si smorzano verso le due code della distribuzione.
 

col3

Figura 2: Distribuzione dei tempi di arresto per i numeri da 2 a 20000.


Ovviamente la congettura di Collatz e’ equivalente ad affermare che per ogni n ci sia un tempo di arresto finito. Nel caso in cui esistesse un numero n che non arriva mai ad 1, perché entra in un loop non contenente 1 o perché cresce senza limite, allora la congettura di Collatz risulterebbe falsa.
Partendo, per esempio, col numero n=6, la sequenza per arrivare al punto fisso 1 prende 8 passi 6, 3, 10, 5, 16, 8, 4, 2, 1, con n=11 ci vogliono 14 passi, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 e per n=27 ci vogliono ben 111 passi prima di arrivare ad 1, toccando numeri al di sopra di 9000 per poi discendere verso il suo attrattore. (vedi figura 3).
 

col4

Figura 3: Grafico della sequenza di Collatz per il numero di partenza 27. Il tempo di arresto e’ di 111 passi.


Qui di seguito il grafo diretto dei primi 20 numeri. Osservare come la sequenza di Collatz converge sempre al loop 4-2-1.
col5

  
La congettura, tramite l’utilizzo massiccio dei computer, e’ stata provata essere vera fino a 2.88×1018. Anche se questo numero e’ molto grande, non significa che la congettura e’ vera. Ci sono state altre congetture che si sono dimostrate false solo per valori veramente grandi.
Utilizzando comunque un approccio di tipo probabilistico, la congettura sembra essere vera. Considerando infatti, un numero intero dispari a caso si può verificare che in media la crescita aspettata della sequenza fino al numero dispari successivo e’ pari a 3/4 e quindi minore di 1. Questo dovrebbe comportare che ogni sequenza di Collatz dovrebbe decrescere man mano che si sviluppa. Ma questo dovrebbe provare solo che la sequenza eventualmente non diverge. Ma e’ sempre possibile che essa entri in un ciclo in cui non e’ presente l’uno. Quindi punto e a capo. Sono solo ipotesi e purtroppo fino a quando non arriverà una dimostrazione o un contro esempio rimaranno tali.
La congettura di Collatz ad oggi rimane irrisolta.
Sebbene il problema sia molto semplice da spiegare e da capire, la natura della congettura e il comportamento di questo sistema dinamico rende enormemente difficile provare o confutare la congettura.
Nel 1985 Lagarias cosi scriveva in merito alla congettura di Collatz:
La difficoltà del problema 3n+1 sembra essere legata al fatto che si tratta di un processo deterministico che simula un comportamento casuale (randomico). I metodi esistenti in Teoria dei numeri non sembrano essere adatti per la soluzione della congettura. In questo senso il problema ad oggi, sembra essere intrattabile.

sabato 14 luglio 2012

Piramidi di numeri primi palindromi

Sono tanti quelli che hanno avuto la possibilità di ammirare la grandiosità delle piramidi di Giza. Si tratta di opere straordinarie su cui ancora molto si discute. Non si sa ancora con certezza, se all’interno le pareti erano ricoperte di pitture e geroglifici come quasi tutte le altre tombe egizie. Se effettivamente fossero strutture legate ad oggetti stellari (vedi per esempio la teoria di Bouval secondo la quale le tre piramidi altro non sono che la rappresentazione sulla terra delle stelle della cintura della costellazione di Orione) o se invece fossero delle semplici tombe.

In questo capitolo, anche noi, ci occuperemo di piramidi, ma di piramidi matematiche i cui mattoni sono le pietre infrangibili della matematica: i numeri primi.

Ma non tutti i primi vanno bene. Per generare la simmetria delle piramidi rispetto all’asse centrale, bisogna considerare solo i primi palindromi. Ricordiamo che i numeri palindromi sono quei numeri che si leggono allo stesso modo da sinistra a destra e viceversa. Partendo col numero primo 2, per esempio, è possibile costruire due piramidi di altezza 5. Diversamente dagli antichi, noi costruiamo le nostre piramidi dall’alto verso il basso.

Ogni gradino è un numero primo palindromo con il precedente gradino che costituisce le cifre centrali. Queste due piramidi sono le più alte che si possono costruire partendo con il numero 2. Le piramidi più alte che si possono costruire partendo con i numeri primi di una sola cifra sono raffigurate di seguito.

Ma è possibile costruire piramidi sempre più alte?

Se invece di considerare come punto di partenza numeri primi ad una cifra, iniziamo le piramidi con numeri primi palindromi con più cifre è possibile costruirne di più alte? E l’altezza di queste piramidi è sempre finita? Abbiamo visto che partendo con un numero primo ad una cifra e aggiungendo ad ogni lato una nuova cifra, l’altezza massima che si riesce ad ottenere è 5. Questo perché dovendo essere ogni gradino un numero primo abbiamo solo 4 possibili scelte per le cifre da aggiungere su ogni lato: 1, 3, 7, 9.

Partendo con numeri primi più grandi probabilmente non aiuta molto di più. Ma ce ne sono così tanti con cui partire che si può avere fortuna. Qui un esempio di tronco di piramide di altezza 9, che ho trovato nel 2000 e pubblicato in internet sul sito dell’Enciclopedia on-line delle sequenze di numeri interi con codice identificativo A046210.

 

7159123219517

371591232195173

33715912321951733

7337159123219517337

973371591232195173379

39733715912321951733793

3397337159123219517337933

933973371591232195173379339

39339733715912321951733793393

Se invece di aggiungere due cifre, una per ogni lato, consideriamo la possibilità di aggiungerne 4, due per lato, allora partendo con il numero primo 2 è possibile costruire una piramide costituita da ben 26 gradini come mostrato di seguito. Proprio una bella struttura.

 

2

30203

903020309

3790302030973

98379030203097389

969837903020309738969

9996983790302030973896999

72999698379030203097389699927

997299969837903020309738969992799

9099729996983790302030973896999279909

94909972999698379030203097389699927990949

779490997299969837903020309738969992799094977

7977949099729996983790302030973896999279909497797

17797794909972999698379030203097389699927990949779771

751779779490997299969837903020309738969992799094977977157

7375177977949099729996983790302030973896999279909497797715737

72737517797794909972999698379030203097389699927990949779771573727

987273751779779490997299969837903020309738969992799094977977157372789

3098727375177977949099729996983790302030973896999279909497797715737278903

70309872737517797794909972999698379030203097389699927990949779771573727890307

397030987273751779779490997299969837903020309738969992799094977977157372789030793

3539703098727375177977949099729996983790302030973896999279909497797715737278903079353

36353970309872737517797794909972999698379030203097389699927990949779771573727890307935363

333635397030987273751779779490997299969837903020309738969992799094977977157372789030793536333

3433363539703098727375177977949099729996983790302030973896999279909497797715737278903079353633343

99343336353970309872737517797794909972999698379030203097389699927990949779771573727890307935363334399

La stessa cosa si può fare usando come seme di partenza gli altri numeri primi di una sola cifra. C’è una piramide di altezza 29 per entrambi i numeri di partenza 5 e 7, mentre per il numero primo 3 la massima altezza è 28.

Sicuramente aumentando la dimensione della stringa di numeri da aggiungere ai due lati porterà a piramidi con altezze sempre maggiori. Ma di quanto? Quante piramidi è possibile costruire?

Indichiamo con l(n) il numero di cifre del numero n. Sia f(n,h,d) il numero di piramidi con altezza h, con numero primo iniziale n e con d cifre aggiunte ad ogni passo.

Per esempio, f(2,1,d)=1 in quanto c’è una sola piramide con numero iniziale 2 e altezza 1.

Al contrario f(101,2,2)=4 in quanto ci sono 4 piramidi con numero iniziale 101, altezza 2 e passo 2.

È possibile stimare la funzione f(n,h,d) e quindi calcolare la massima altezza ottenibile?

La risposta è si.

In base al teorema dei numeri primi, il numero di primi tra 2 e x è dato in modo approssimato da x/ln(x). Un’interpretazione di questo teorema è che la probabilità che un numero intero scelto a caso sia primo è dato da 1/ln(x). Quando costruiamo la piramide di numeri primi palindromi spostandoci da un gradino a quello successivo, ci sono 10*d interi da provare e quindi:

Nella figura di seguito è riportato l’andamento della curva approssimata per il caso n=2 e d=2.

Grafico della funzione f(2,h,2)/f(2,h-1,2). Notare l’ottimo accordo tra i dati reali e quelli stimati.

La coincidenza tra i dati e la curva approssimata è molto buona.

Osservare che man mano che h cresce il numero delle piramidi comincia a decrescere rapidamente e tende verso zero.

Per questo motivo, due studiosi di numeri primi, G.L. Honaker e Chris Caldwell, hanno congetturato che:

Congettura: Tutte le piramidi prime palindrome con un fissato passo d, hanno un’altezza finita.

Essi hanno inoltre trovato una formula per f(n,h,d) data da:

Osservare che per d=3 e n=2 questa relazione predice che ci dovrebbero essere circa 1030 possibili piramidi. Questo fa capire che voler cercare le piramidi più alte con un programma per computer è impensabile. Considerando, comunque, un numero limitato di piramidi (un massimo di 160), Honaker e Caldwell hanno trovato un altezza massima di 94, 101, 102, e 100 per i numeri primi di partenza 2, 3, 5,e 7 rispettivamente. Se fissiamo il passo d, questo limita le piramidi ad avere un’altezza finita. E se invece permettiamo a d di prendere qualsiasi valore? Argomenti analoghi a quelli riportati precedentemente suggeriscono che per qualsiasi numero primo palindromo di partenza si dovrebbe essere capaci di costruire piramidi tanto alte quanto si vuole. Chiaramente l’altezza h delle piramidi in media è proporzionale allo step d. C’è un caso particolare molto interessante. Supponiamo che per ogni gradino della piramide, il numero palindromo da utilizzare, sia il più piccolo possibile indipendentemente da d. In questo caso partendo da 2 la piramide inizialmente dovrebbe essere la seguente:

 

2

727

37273

333727333

93337273339

309333727333903

1830933372733390381

92183093337273339038129

3921830933372733390381293

1333921830933372733390381293331

18133392183093337273339038129333181

 

Questa piramide può essere considerata come una sequenza dove ogni termine è rappresentato da un gradino. Cioè: a1=2, a2=727, a3=37273 ........

Questa sequenza può anche essere condensata scrivendo a1 seguito dalle cifre che sono aggiunte sulla sinistra ad ogni stadio della piramide.

2, 7, 3, 33, 9, 30, 18, 92, 3, 133, 18, 117, 17, 15, 346, 93, 33, 180, 120, 194, 126, 336, 331, 330, 95, 12, 118, 369, 39, 32, 165, 313, 165, 134, 13, 149, 195, 145, 158, 720, 18, 396, 193, 102, 737, 964, 722, 156, 106, 395, 945, 303, 310, 113, 150, 303, 715, 123

Un’altra sequenza di numeri primi palindromi può essere generata cercando di dare una risposta ad una questione che l’autore ha pubblicato su internet nel 2000 (sequenza A046210) e che recita:

Qual è il più piccolo numero primo palindromo che genera una piramide di altezza massima n?

La sequenza considerando d=1, inizia con:

11, 131, 2, 929, 10301, 16361, 10281118201, 35605550653, 7159123219517…

11 è il più piccolo numero primo che genera una piramide di altezza 1.

Infatti, tutti i numeri che si possono formare con le cifre 2, 3, 7, 9 non sono primi.

Il numero primo successivo 131, è il più piccolo numero primo che forma una piramide di altezza 2 e cosi via.

Come continua questa sequenza? Ad oggi nessuno lo sa, anche se nuove scoperte possono essere dietro l’angolo.

lunedì 2 luglio 2012

La gravita’. Una forza ancora misteriosa

 

La gravita’ e’ una delle quattro forze fondamentali della natura. Le altre tre sono la forza nucleare che tiene insieme i protoni e neutroni all’interno del nucleo, la forza debole che regola il decadimento beta del nucleo (un neutrone si trasforma in un protone con l’emissione di elettroni e neutrini) e la forza elettromagnetica che tiene insieme gli elettroni intorno al nucleo. La forza gravitazionale e’ di tipo attrattivo ed e’ quella che ci mantiene sulla superficie della Terra e quella che fa orbitare la luna intorno alla terra come anche la terra intorno al sole e cosi via.

Sia l’interazione nucleare forte che quella debole hanno un raggio di azione limitato mentre quella gravitazionale ed elettromagnetica hanno un raggio di azione infinito. Ma come si spiega un’interazione con raggio di azione infinito? Come fanno le cariche o le masse ad interagire a distanze anche infinite? Il modello Standard ha risolto il problema assumendo che la forza sia la manifestazione dello scambio di un quanto mediatore che viene continuamente scambiato tra due oggetti, siano esse cariche, masse o nucleoni. Per capire come funzionano le cose pensate a due giocatori di tennis che vengono mantenuti in gioco dalla palla che si scambiano. I giocatori interagiscono tra di loro grazie alla palla scambiata.

Tra i mediatori previsti dal modello standard solo il gravitone non e’ stato ancora scoperto.

Ritorniamo alla forza di gravita’ di Newton, scoperta nel 1687 e formulata nel modo seguente: tutti i corpi si attraggono reciprocamente con una forza di intensità

F= G· (M·m)/r2

dove G=6.67259X10-11 N·m2/Kg2 è la costante di gravitazione universale. Il modulo di questa forza quindi e’ direttamente proporzionale alle masse e inversamente proporzionale al quadrato della distanza. Osserviamo che la costante gravitazionale e’ un numero molto piccolo ma nonostante cio’ la gravitazione e’ la forza che permea l’intero universo ed esercita la sua azione fino ai confini estremi del cosmo. Se questa fosse solo leggermente piu’ piccola o piu’ grande del valore attuale l’universo non sarebbe quello che vediamo oggi.

La gravita’ e’ stata la forza che subito dopo il Big Bang ha attratto la materia in strutture molto grandi all’interno delle quali si sono poi formate le galassie nelle quali hanno avuto inizio le stelle.

Ed e’ sempre la gravita’ che regola la vita delle stelle e la loro morte una volta che esauriscono il combustibile nucleare compattando la materia e formando cosi stelle di neutroni o buchi neri.

Sulla Terra, essa trascina giu’ i massi dalle montagne, muove i ghiacciai, crea le maree, fa cadere le mele dagli alberi e ci affatica durante la salita. I fisici hanno compreso tutti i dettagli della gravita’ e riescono a fare previsioni con grande accuratezza. Ad ogni modo c’e’ il sospetto che c’e’ qualcosa che ancora manca, qualche cosa di abbastanza grande da cambiare o addirittura unificare la maggior parte delle nostre teorie dell’universo.

La gravita’ e’ stata la prima forza ad essere studiata. Il grande scienziato Isaac Newton nel 1666 cercando di comprendere il moto degli oggetti arrivo’ alla famosissima formula F=ma, cioe’ la forza che muove un oggetto e’ uguale al prodotto della sua massa per la sua accelerazione.

Piu’ la forza sull’oggetto e’ intensa e maggiore sara’ la sua accelerazione. Newton mettendo insieme la sua equazione con quella che aveva trovato Keplero, che dice che le distanze dei pianeti dal sole sono legate al tempo che i pianeti impiegano per orbitare intorno al sole, arriva alla descrizione del moto degli oggetti attratti dalla Terra. Ma non si fermo’ qui. Ando’ oltre estendendo la sua legge che aveva trovato per gli oggetti nelle vicinanze della Terra, agli oggetti celesti presenti in tutto l’universo. Newton chiamo’ questa legge la legge universale gravitazionale: indipendentemente se si tratta di una mela o di un pianeta, se si sta cadendo da un albero o orbitando nello spazio la legge che governa il nostro moto sara’ sempre la stessa. Usando l’equazione di Newton e’ possibile misurare le masse di oggetto lontani dalla Terra, come per esempio il sole, il pianeta Giove, la stella Sirio etc etc. Non solo. La gravitazione universale ci permette anche di “pesare” la cosiddetta materia oscura che permea l’intero universo e la cui natura e’ ancora sconosciuta.

 

Mappa in 3D della materia oscura (NASA, ESA and R. Massey)

La sua esistenza e’ stata formulata la prima volta all’interno del modello del Big Bang per spiegare la formazione delle galassie e degli ammassi in un tempo cosi breve come quello osservato per l’eta’ dell’universo (13.7 miliardi di anni). Un’evidenza osservativa della presenza della materia oscura e’ fornita dalle curve di rotazione delle galassie a spirale. Queste galassie posseggono una vasta popolazione di stelle che orbitano intorno al centro galattico. Secondo la terza legge di Keplero, le stelle con orbite galattiche piu’ grandi dovrebbero avere velocita’ di rotazione minori. Quindi le stelle alla periferia della galassia dovrebbero avere una velocita’ molto bassa come mostrato nel grafico sottostante dalla curva A.

 

Curva di rotazione di una galassia: (A): predetta; (B): osservata.

Tuttavia le misure effettuate dagli astronomi, mostrano una velocita’ per le stelle periferiche quasi uguale a quella delle stelle vicino al centro galattico come mostrato dalla curva B del grafico precedente. Questo andamento della velocita’ di rotazione puo’ essere spiegato introducendo il concetto di materia oscura che forma un alone intorno alle galassie che aumenta man mano che ci si sposta verso i confini della galassia. In prima approssimazione considerando una stella periferica di una qualsiasi galassia, l’eguaglianza tra la legge di gravitazione e la forza centrifuga ci porta alla seguente relazione

V 2(r) = GM(r)/r

dove v e’ la velocita’ rotazionale della stella alla distanza r dal centro galattico ed M la massa totale all’interno del raggio r. Affinche’ la velocita’ sia costante bisogna assumere che la massa aumenti con il raggio r. Ma dalle osservazioni delle galassie emerge che la materia visibile e’ concentrata principalmente nel centro galattico mentre diminuisce sempre di piu’ man mano che ci si sposta vero la periferia della galassia. Da qui la necessita’ di ipotizzare l’esistenza di una materia non visibile che aumenta verso l’esterno delle galassie.

Ritorniamo alla forza gravitazionale. Come abbiamo gia’ detto essa e’ una forza a lungo raggio ma non sappiamo come essa agisce tra i corpi istantaneamente a qualsiasi distanza essi si trovano. In effetti i fisici non hanno mai accettato di buon grado questa “azione a distanza” incluso lo stesso Newton.

Einstein anche non accettava questa idea e trovo’ un’alternativa. Nella sua teoria generale della relativita’ egli propose che la gravita’ altro non e’ che il risultato della natura dello spazio-tempo. Questo puo’ essere pensato come una struttura continua tridimensionale che un corpo puo’ deformare con la sua massa; piu’ un corpo e’ massiccio, maggiore e’ la deformazione. L’interazione gravitazionale viene interpretata in termini geometrici: un corpo massiccio deforma lo spazio tempo e se un corpo piu’ piccolo entra all’interno di questa “valle” esso comincera’ a ruotare intorno al grande corpo.

Ma la teoria di Einstein ha un problema: la gravita’ non si adegua alle altre tre forze presenti nell’universo (la forza elettromagnetica, la forza debole e quella forte). Quest’ultime possono essere descritte in termini quantistici come dei campi creati e trasportati da onde che allo stesso tempo possono essere anche particelle (dualita’ onda particelle). Ad oggi le onde gravitazionali anche se previste su base teorica ancora non sono state rilevate e le particelle associate a queste onde chiamate gravitoni probabilmente non potranno mai essere individuate. Questa forza cosi familiare, presente nella vita di tutti i giorni come si spiega allora?

E qui la gravita’ diventa strana. Se la gravita’ e’ come ritengono i fisici, la massa che dice allo spazio come curvare e lo spazio dice a sua volta alla massa come muoversi e chiaro che spazio e massa sono indissolubilmente legate tra loro.

Ma secondo la famosa equazione di Einstein E = mc2, la massa e’ equivalente all’energia da cui possiamo dedurre che anche lo spazio deve avere energia. E in effetti e’ proprio cosi. In meccanica quantistica, infatti, anche lo spazio vuoto ha un’energia diversa da zero e dai conti fatti dai fisici teorici questa energia dovrebbe essere cosi grande da curvare lo spazio in modo da poter ricondurre il nostro Universo alle dimensioni di un protone. Ma nella realta’ noi sappiamo che cio’ non e’ vero. E i problemi non finiscono qui. Negli ultimi anni le misure effettuate dagli astrofisici ci dicono che l’universo non sta decelerando sotto l’azione della gravita’ come previsto ma che addirittura sta accelerando. C’e’ qualche cosa che si sta opponendo alla azione attrattiva della gravitazione. Ma cosa? I fisici l’hanno chiamata energia oscura e la spiegazione piu’ elegante di questo concetto e’ l’energia associata al vuoto. In altre parole l’accelerazione dell’universo puo’ essere spiegata dalla cosiddetta costante cosmologica di Einstein indicata con Λ che e’ legata alla densita’ energetica del vuoto tramite l’equazione:

Qui G e’ la costante gravitazionale universale e rho la densita’ di energia del vuoto. Le osservazioni di un universo in accelerazione sembrano confermare la teoria inflazionistica di Alan Guth secondo la quale l’universo nascente passo’ attraverso una fase di espansione esponenziale spinto da una densita’ di energia di vuoto negativa (ovvero una pressione di vuoto positiva) cioe’:

dove c indica la velocita’ della luce e p la pressione.

Comunque l’energia del vuoto non risolve il problema dell’energia oscura. Infatti se si confronta la quantita’ di energia oscura presente nell’universo con quella relativa al vuoto si trova che questa e’ solo una piccola parte. E’ possibile che i calcoli siano sbagliati? Al momento nessuno lo sa. Forse la teoria delle stringhe o la teoria della gravitazione quantistica a loop un giorno potranno darci una risposta.

Un altro mistero legato alla forza di gravita’ e’ quello delle onde gravitazionali. Questo sono create quando dei corpi accelerati distorcono lo spazio-tempo. Un esempio e’ quello di due stelle di neutroni che coalescendo possono dare origine ad un buco nero. In questo caso lo spazio-tempo verrebbe cosi distorto che le onde gravitazionali prodotte dovrebbero avere intensita’ molto grandi e quindi rilevabili.

L’esperimento ad oggi piu’ sensibile e’ il Laser Interferometer Gravitational-waver Observatory anche chiamato LIGO, che puo’ misurare distorsioni fino a 10-18 metri. Comunque ad oggi non sono state ancora osservate onde gravitazionali. Ma potrebbe essere solo un problema di sensibilta’ degli strumenti. Per questo motivo l’esperimento LIGO sta ricevendo degli aggiornamenti per renderlo capace di rilevare onde gravitazionali su un largo volume di cielo.

La scoperta delle onde gravitazionali e’ molto importante non solo da un punto di vista teorico (a conferma di questa o quella teoria) ma anche da un punto di vista delle nuove informazioni che essa potrebbe portare.

Le onde gravitazionali, non trasportano solo energia, ma anche informazioni su come esse sono state prodotte. Per esempio le onde prodotte da un’esplosione di una supernova sono completamente diverse da quelle prodotte dalla fusione di due buchi neri. Le radiazioni elettromagnetiche possono essere assorbite o emesse dalla materia che si interpone tra noi e la sorgente astronomica. Questo rende gli oggetti osservati “sfocati” o addirittura non visibili. Per esempio con l’analisi della radiazione elettromagnetica non potremo mai studiare l’interno del sole o di una supernova ma solo gli strati piu’ esterni. Al contrario le onde gravitazionali potrebbero informarci sugli eventi che le hanno generate essendo trasparenti alla maggior parte degli oggetti astronomici.

Concludendo, la forza gravitazionale anche se e’ stata la prima delle forze ad essere scoperte e’ quella che ancora presenta molti interrogativi aperti a cui i fisici nei prossimi anni dovranno cercare di dare una risposta.

http://www.wikio.it